Abstract
This article proposes an energy-efficiency strategy based on the optimization of driving patterns for an electric vehicle (EV). The EV studied in this paper is a commercial vehicle only driven by a traction motor. The motor drives the front wheels indirectly through the differential drive. The electrical inverter model and the power-train efficiency are established by lookup tables determined by power tests in a dynamometric bank. The optimization problem is focused on maximizing energy-efficiency between the wheel power and battery pack, not only to maintain but also to improve its value by modifying the state of charge (SOC). The solution is found by means of a Particle Swarm Optimization (PSO) algorithm. The optimizer simulation results validate the increasing efficiency with the speed setpoint variations, and also show that the battery SOC is improved. The best results are obtained when the speed variation is between 5% and 6%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.