Abstract

Since energy consumption (EC) is becoming an important issue for sustainable development in the world, it has a practical significance to predict EC effectively. However, there are two main uncertainty factors affecting the accuracy of a region's EC prediction. Firstly, with the ongoing rapid changes in society, the consumption amounts can be non-smooth or even fluctuating during a long time period, which makes it difficult to investigate the sequence's trend in order to forecast. Secondly, in a given region, it is difficult to express the consumption amount as a real number, as there are different development levels in the region, which would be more suitably described as interval numbers. Most traditional prediction models for energy consumption forecasting deal with long-term real numbers. It is seldom found to discover research that focuses specifically on uncertain EC data. To this end, a novel energy consumption forecasting model has been established by expressing ECs in a region as interval grey numbers combining with the optimized discrete grey model (DGM(1,1)) in Grey System Theory (GST). To prove the effectiveness of the method, per capita annual electricity consumption in southern Jiangsu of China is selected as an example. The results show that the proposed model reveals the best accuracy for the short data sequences (the average fitting error is only 2.19% and the average three-step forecasting error is less than 4%) compared with three GM models and four classical statistical models. By extension, any fields of EC, such as petroleum consumption, natural gas consumption, can also be predicted using this novel model. As the sustained growth in EC of China's, it is of great significance to predict EC accurately to manage serious energy security and environmental pollution problems, as well as formulating relevant energy policies by the government.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.