Abstract

Nowadays, high-speed permanent magnet synchronous machines (HSPMSMs) are widely used in high-speed direct-drive applications. Moreover, modular multilevel converters (MMCs) have attracted a lot of attention. In this paper, the mathematical model of the MMC for the HSPMSM was built on high- and low-speed regions, respectively, and the control of each model is completely decoupled. Moreover, energy balance control schemes based on the common mode current injection of the MMC with HSPMSM drive applications have been proposed for high- and low-speed cases, respectively. Based on this model, the controller is proposed for high- and low-speed cases, respectively. Simulation and experiment results indicate that the proposed energy balance control method for an MMC in the high-speed PMSM drive application exhibits significant performance, which can ensure the energy balance of the MMC and eliminate the circulating current of the MMC directly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call