Abstract

In practice, nanofluids' thermal conductivity and viscosity are the most important parameters in engineering applications. Viscosity affects pumping performance. Theoretical viscosity correlations are widely used in numerical studies. However, existing correlations show an underestimation of the actual viscosity compared to the measurement results. Although many nanofluid viscosity correlations have been developed, there is no generally accepted correlation. This paper reviews the theoretical, numerical, and experimental viscosity correlations and proposes a new correlation based on an analysis of approximately 1200 experimental and 4000 theoretical data tested for about 50 types of nanofluids in the temperature range 273–333 K and particle diameters 2–300 nm. The studied volume fraction range for the nanofluids was up to 10%. Existing correlations take into account the impact of up to two to three parameters The new viscosity correlation is proposed to predict the effective viscosity of nanofluids based on regression analysis of theoretical and experimental viscosity results, and it considers several factors that significantly affect the effective viscosity of nanofluids, such as nanoparticle diameter, density, temperature, types of nanoparticles, and base fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.