Abstract
The nature of Alzheimer's disease limits the effectiveness of available oral treatments. The aim of this study was to assess the feasibility of transdermal iontophoretic delivery of donepezil in a hairless rat model as a potential treatment modality in Alzheimer's and to evaluate the effect of current densities on its pharmacokinetics. Donepezil loaded integrated Wearable Electronic Drug Delivery (WEDD(®)) patches supplied current levels of 0, 0.13, 0.26 and 0.39 mA. Plasma extracted donepezil was analyzed by HPLC. Noncompartmental analysis was used to characterize disposition of the drug. The amount delivered across hairless rat skin and areas under the curve (AUC) were found to rise in proportion to the current levels. Peak plasma levels of 0.094, 0.237 and 0.336 μg/ml were achieved at 0.13, 0.26 and 0.39 mA respectively. Time to peak plasma concentrations was after termination of current and same for all current levels. Transdermal elimination half-life was significantly increased from the true value of 3.2h due to depot formation, prolonging complete absorption of the drug. Donepezil was successfully delivered iontophoretically at levels sufficient to produce pharmacodymanic effect. Pharmacokinetic analysis demonstrated linear kinetics at the current levels used and flip flop kinetics following iontophoretic administration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.