Abstract

A simple, novel electrochemical sensing platform based on porous g-C3N4 (PCN) and multi-walled carbon nanotubes (MWCNTs) for the sensitive detection of uric acid (UA) has been proposed. The obtained PCN possessed good biocompatibility and large specific surface area with good dispersion, which was beneficial to electrocatalysis. The introduction of MWCNT as the conducting matrix improved the poor conductivity of PCN. Due to synergistic effect, the redox peak currents of UA substantially enhanced at PCN/MWCNT-modified electrode. The oxidation peak current exhibited linear responses to the concentration of UA in the range from 0.2 to 4 μM and 4 to 20 μM, and the limit of detection was calculated as 0.139 μM (signal-to-noise ratio of 3 (S/N = 3)). The sensor based on PCN/MWCNT-modified electrode was also successfully applied in human serums and also showed excellent selectivity, reproducibility, and stability. This work illustrated that the fabricated electrochemical sensor was promising for analytical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call