Abstract

Strict quantification of metronidazole (MNZ, one kind of nitroimidazole antibiotic) plays extraordinary roles for human health due to the serious toxicity arose from overuse of MNZ. In this research, a novel electrochemical sensor is proposed for sensitive quantitation of MNZ. This sensor is constructed using a composite of MnOOH nanorods and expanded graphite (MnOOH/EG), synthesized by a hydrothermal method. The morphological analyses and electrochemical capability tests through various analytical techniques (e.g., microscopic and electrochemical methods) exposit that MnOOH/EG composite displays prominent electrocatalytic activity and sensing capability for quantification of MNZ. A synergistic effect between EG and MnOOH is revealed, where EG offers a high electrode active area and a strong electron-transport ability, while MnOOH features outstanding electrocatalytic behavior. This novel electrochemical sensor displays high sensitivity toward voltammetric quantification of MNZ with detection limit of 17 nM. Moreover, this developed MnOOH/EG electrochemical sensor also demonstrates prominent reproducibility and repeatability as well as high selectivity in the quantitative analysis of MNZ. Beyond that, the constructed sensor has been also successfully applied in quantitative analysis of MNZ in commercial drugs and environmental water samples. Consequently, the MnOOH/EG composite presented here has strong potential to be employed as a sensing material for constructing electrochemical sensor in widespread fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.