Abstract

An electrochemical magneto Au nanoparticles/carbon paste electrodes (MAuNP/CPE) which is used for the determination of acetaminophen (AC) in real samples was developed. Initially, Au nanoparticles were immobilized at the surface of Fe3O4 (AuNPs@Fe3O4), which was used as a sorbent for capturing AC molecules. After adding AuNPs@Fe3O4 to the AC solution and stirring for 20 min, the AuNPs@Fe3O4 was gathered on the magneto electrode based on its magnetic field. The AC molecules which became adsorbed at AuNPs@Fe3O4 were analyzed by differential pulse voltammetry (DPV). For characterization and investigation of the performance of AuNPs@Fe3O4 and MAuNPs/CPE, various methods, including scanning electron microscopy, X-ray diffraction, UV-Vis spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and DPV were used. Under the optimized conditions, the anodic peak current was linear to the concentration of AC in the range of 0.1 to 70.0μmol L(-1) with the detection limit of 4.5×10(-2)μmol L(-1). This method was also successfully used to detect the concentration of AC in pharmaceutical formulations and human serum samples. In addition, the proposed magneto sensor exhibited good reproducibility, long-term stability and fast current response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.