Abstract

In this paper, a novel electrochemical immunosensor to detect staphylococcal enterotoxin B based on bio-magnetosomes, polyaniline nano-gold composite and 1,2-dimethyl-3-butylimidazolium hexafluorophosphate ionic liquid, was developed, and found to exhibit high sensitivity and stability. The specific antibody to staphylococcal enterotoxin B conjugated with the magnetosomes showed rapid immunoreactions and good dispersion, which contributed to the formation of a nanostructurally smooth and dense film on the surface of a gold electrode. Polyaniline nano-gold composite and 1,2-dimethyl-3-butylimidazolium hexafluorophosphate ionic liquid were used to modify the electrode as mediators to improve the electron transfer and offer an excellent biocompatible microenvironment for the antibody to retain its activity to enhance the response of the electrochemical sensor. Under optimal conditions, the developed immunosensor showed a good linear response in the range from 0.05 to 5ng/mL (R2=0.9957) with a detection limit as low as 0.017ng/mL, compared with the one without magnetosomes (0.05–5ng/mL, 0.033ng/mL), this developed immunosensor showed a wider response range and a reduced detection limit. And a good specificity with little adsorption to staphylococcal enterotoxin A, C and Na+, K+, Ca2+ was obtained. Moreover, the immunosensor exhibited a good long-time stability at 4°C reaching up to 60 days, which showed a relatively long working life. Meanwhile the immunosensor could be regenerated four times using NaOH elution. The sensor also displayed a good repeatability with a relative standard deviation of 5.02% for staphylococcal enterotoxin B detection (1ng/mL, n=9). Furthermore, high recoveries in milk samples from 81% to 118% were achieved and successfully applied to milk sample detection. The obtained results demonstrate that the developed electrochemical immunosensor is a promising tool for the detection of staphylococcal enterotoxin B in food.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.