Abstract

In the present study, we report a facile approach to employ gold nanoparticle (AuNPs) and thiol graphene quantum dots (GQD-SH) as the nanomaterial for ultrasensitive detection of streptomycin (STR). Based on this strategy, a GQD-SH was immobilized onto the surface of a glassy carbon electrode (GCE). AuNPs have been immobilized on SH groups of GQDs through bonding formation of AuS and Apt have been loaded on the electrode surface through the interaction between thiol group of aptamer. By incubating STR as a target onto the surface of the prepared Apt/AuNPs/GQD-SH/GCE as a proposed nanoaptasensor, the Apt/STR complex was formed and the changes of the electrochemical signal were evaluated with the EIS technique. The proposed nanoaptasensor showed wide linear range from 0.1 to 700pgml−1. Finally, the proposed nanoaptasensor was successfully applied for the determination of STR in real samples and satisfactory results were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.