Abstract

Carbon nanotubes (CNTs)/agarose (AG) membrane on the ITO (indium tin oxide) conductive glass, with high efficiency of electrocatalytic degradation for rhodamine B (Rh-B) in water, was prepared using an easy and green method. The prepared CNTs/AG membrane was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectra (EDS), infrared spectroscopy (IR), and electrochemical impedance spectroscopy (EIS). The results revealed that CNTs were dispersed in the AG membrane. Additionally, the electrocatalytic activities for Rh-B were conducted on the electrochemical workstation with a three-electrode system. Both initial pH and potential played an important role in the process of electrocatalytic degradation. At pH3 and potential reaching 4V, the removal rate of Rh-B (10mg/L) in water achieved 96% within 20min. The stability of the prepared CNTs/AG membrane was also investigated. Besides, the toxicities of the main intermediates from the electrocatalytic degradation for Rh-B were calculated using the ECOSAR program and EPIWIN software, and results indicated that the toxicities of some intermediates were higher than those of the parent pollutant (Rh-B). These findings provided a light-spot to simplify the preparation of efficient working electrode and emphasized the possible potential risks from intermediates at the same time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.