Abstract

High electric vehicles (EVs) penetration is expected to increase smart grid solicitation especially with various EV charging demands. As result, the EV charging process at the supply station has to be managed in the way to promote the EV satisfaction level while preserving smart grid stability. In this article, the bidirectional power flow between EV and grid; Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G), is exploited. We make a profit from the unused electric power of EVs and we present an EV load management technique based on EV charging and EV discharging coordination. We propose a peak load management model (PLM) used to schedule EVs for charging or discharging service according to the power demand with the timing and location where each EV need to be served. Also, we propose an Electric Vehicle Supply Equipment (EVSE) selection model to guide EVs to the supply station. We develop a mathematical formalism for handling requests for EV charging/discharging at EVSE based on queuing theory. Those models are evaluated while considering the mobility of vehicles in an urban scenario and time-of-use-pricing (TOUP). Finally, extensive matlab simulations are conducted to validate the proposed approach and demonstrate its effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.