Abstract

The advances in wavelength-division multiplexing (WDM) technology are expected to facilitate bandwidth-intensive multicast applications through light splitting. Due to complexity and cost constraints, light splitting (or optical multicast) nodes are sparsely configured in a practical WDM network. In this article, we investigate the multicast routing problem under the sparse light-splitting constraint. An efficient sparse splitting constrained multicast routing algorithm called Multicast Capable Node First Heuristic (MCNFH) is proposed. The key idea of MCNFH is to include the shortest path, that includes most of the multicast capable nodes, for configuring the multicast tree. Simulations and comparisons are used to demonstrate the performance of MCNFH. Simulation results and analysis show that MCNFH builds multicast trees with the least wavelength channel cost and with the smallest number of wavelengths used per link. In addition, MCNFH requires only one transmitter at the source node.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call