Abstract
With the increasing use of onboard high-speed computing systems, vehicle manufacturers are offering significant advanced features of driver assistance systems. Pedestrian detection is one of the major requirements of such systems, which commonly use cameras, radar, and ultrasonic sensors. Image recognition based on captured image streams is one of the powerful tools used for the detection of pedestrians, which exhibits similarities and distinguishing features compared to general object detection. Although pedestrian detection has advanced significantly along with deep learning, some issues still need to be addressed. Pedestrian detection is essential for several real-world applications and is an initial step in outdoor scene analysis. Typically, in a crowded situation, conventional detectors are unable to distinguish persons from each other successfully. This study presents a novel technique, based on the Dual Gate Mixed Dilated Convolution Network, to address this problem by adaptively filtering spatial areas where the patterns are still complicated and require further processing. The proposed technique manages obscured patterns while offering improved multiscale pedestrian recognition accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering, Technology & Applied Science Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.