Abstract
Nanobubbles (NBs), given their unique properties, could theoretically be paired with rhamnolipids (RL) to tackle polycyclic aromatic hydrocarbon contamination in groundwater. This approach may overcome the limitations of traditional surfactants, such as high toxicity and low efficiency. In this study, the remediation efficiency of RL, with or without NBs, was assessed through soil column experiments (soil contaminated with phenanthrene). Through the analysis of the two-site non-equilibrium diffusion model, there was a synergistic effect between NBs and RL. The introduction of NBs led to a reduction of up to 24.3 % in the total removal time of phenanthrene. The direct reason for this was that with NBs, the retardation factor of RL was reduced by 1.9 % to 15.4 %, which accelerated the solute replacement of RL. The reasons for this synergy were multifaceted. Detailed analysis reveals that NBs improve RL's colloidal stability, increase its absolute zeta potential, and reduce its soil adsorption capacity by 13.3 %–19.9 %. Furthermore, NBs and their interaction with RL substantially diminish the surface tension, contact angle, and dynamic viscosity of the leaching solution. These changes in surface thermodynamic and rheological properties significantly enhance the migration efficiency of the eluent. The research outcomes facilitate a thorough comprehension of NBs' attributes and their relevant applications, and propose an eco-friendly method to improve the efficiency of surfactant remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.