Abstract

AbstractIn this study, a switch controller manages the power‐sharing between the battery and human mode to improve the rider's metabolism and manage the battery SOC. The main idea is to optimize this power source switching element for changing the status to reach a trade‐off between lack of tiredness and keeping the SOC high. Calorie burning is closely related to the rider's physical characteristics. In this paper, these parameters are investigated to calculate calorie burning. When the electric‐powered mode is activated, the SOC level comes down. When the human‐powered mode is activated, the human power source provides energy. The model converts the bicycle speed into the rider's heart rate and then changes it into burned calories based on some equations. These equations are obtained by poly fitting after experiments. This optimization causes 33.5% and 50% burning calorie reduction in Cleaveland and Portuguese driving cycles. Also, in the Portuguese driving cycle, the battery usage percentage decreases 39.56% from to 20.54% after optimization; therefore, the burning calorie decreases 265.84 Kcal to 176.83 Kcal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.