Abstract
A deep learning based reduced order modelling method for general unsteady fluid systems is proposed, which is then applied to develop a novel dynamic wind farm wake model. The proposed method employs the proper orthogonal decomposition technique for reducing the flow field dimension and the long short-term memory network for predicting the reduced representation of the flow field at a future time step. The method is specifically designed to tackle distributed fluid systems (such as wind farm wakes) and to be control-oriented. For wind farm wake modelling, a set of large eddy simulations are first carried out to generate a series of flow field data for wind turbines operating in different conditions. Then the proposed method is employed to develop the data-based wake model. The results show that this novel dynamic wind farm wake model can predict the main features of unsteady wind turbine wakes similarly as high-fidelity wake models while running as fast as the low-fidelity static wake models and that the model’s overall prediction error is just 4.8% with respect to the freestream wind speed. As an illustrative example, the developed model can predict the unsteady turbine wakes of a 9-turbine test wind farm within several seconds based on a standard desktop while it requires tens of thousands of CPU hours on a high-performance computing cluster if a high-fidelity model is used. Thus the developed model can be used for fast yet accurate simulation of wind farms as well as for their predictions and control designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.