Abstract

Software-defined networks (SDN) has a holistic view of the network. It is highly suitable for handling dynamic loads in the traditional network with a minimal update in the network infrastructure. However, the standard SDN architecture control plane has been designed for single or multiple distributed SDN controllers facing severe bottleneck issues. Our initial research created a reference model for the traditional network, using the standard SDN (referred to as SDN hereafter) in a network simulator called NetSim. Based on the network traffic, the reference models consisted of light, modest and heavy networks depending on the number of connected IoT devices. Furthermore, a priority scheduling and congestion control algorithm is proposed in the standard SDN, named extended SDN (eSDN), which minimises congestion and performs better than the standard SDN. However, the enhancement was suitable only for the small-scale network because, in a large-scale network, the eSDN does not support dynamic SDN controller mapping. Often, the same SDN controller gets overloaded, leading to a single point of failure. Our literature review shows that most proposed solutions are based on static SDN controller deployment without considering flow fluctuations and traffic bursts that lead to a lack of load balancing among the SDN controllers in real-time, eventually increasing the network latency. Therefore, to maintain the Quality of Service (QoS) in the network, it becomes imperative for the static SDN controller to neutralise the on-the-fly traffic burst. Thus, our novel dynamic controller mapping algorithm with multiple-controller placement in the SDN is critical to solving the identified issues. In dSDN, the SDN controllers are mapped dynamically with the load fluctuation. If any SDN controller reaches its maximum threshold, the rest of the traffic will be diverted to another controller, significantly reducing delay and enhancing the overall performance. Our technique considers the latency and load fluctuation in the network and manages the situations where static mapping is ineffective in dealing with the dynamic flow variation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.