Abstract
Wireless Sensor Network (WSN) localisation is an essential requirement in the increasing prevalence of WSN applications. It is an important part of the Internet of Things (IOT) and has become a hot research area. Distance Vector-Hop algorithm (DV-Hop), a range-free algorithm, is widely deployed to solve the localisation problem in WSN. However, the results of the estimation precision are usually not satisfactory. In order to improve the WSN positioning accuracy, in this paper, we propose a new coupling algorithm based on Bacterial Foraging Algorithm (BFA) and Glow-worm Swarm Optimisation (GSO) (BFO-GSO). The algorithm has good convergence speed, local search ability of BFO and global convergence of GSO. The optimisation performance is verified by CEC2013 benchmarks in those designs against the original algorithm. Furthermore, Wilcoxon's rank-sum non-parametric statistical test and Friedman test are carried out to judge whether the results of the proposed algorithm differ from those of the other algorithms in a statistically significant way. The numerical results prove that it is able to significantly outperform others on majority of the benchmark functions. Finally, the proposed algorithm is also combined into the DV-Hop algorithm to improve the WSN positioning accuracy. Experimental results show that our improved algorithm achieves better performance when compared with other DV-Hop algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Wireless and Mobile Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.