Abstract
PurposeThe spatial and non-spatial attributes are the two important characteristics of a spatial point, which belong to the two different attribute domains in many Geographic Information Systems applications. The dual clustering algorithms take into account both spatial and non-spatial attributes, where a cluster has not only high proximity in spatial domain but also high similarity in non-spatial domain. In a geographical dataset, traditional dual spatial clustering algorithms discover homogeneous spatially adjacent clusters suffering from the between-cluster inhomogeneity where those spatial points are described in non-spatial domain. To overcome this limitation, a novel dual-domain clustering algorithm (DDCA) is proposed by considering both spatial proximity and attribute similarity with the presence of inhomogeneity.Design/methodology/approachIn this algorithm, Delaunay triangulation with edge length constraints is first employed to construct spatial proximity relationships amongst objects. Then, a clustering strategy based on statistical change detection is designed to obtain clusters with similar attributes.FindingsThe effectiveness and practicability of the proposed algorithm are illustrated by experiments on both simulated datasets and real spatial events. It is found that the proposed algorithm can adaptively and accurately detect clusters with spatial proximity and similar non-spatial attributes under the consideration of inhomogeneity.Originality/valueTraditional dual spatial clustering algorithms discover homogeneous spatially adjacent clusters suffering from the between-cluster inhomogeneity where those spatial points are described in non-spatial domain. The research here is a contribution to developing a dual spatial clustering method considering both spatial proximity and attribute similarity with the presence of inhomogeneity. The detection of these clusters is useful to understand the local patterns of geographical phenomena, such as land use classification, spatial patterns research and big geo-data analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.