Abstract

Transient transfection of mammalian cells using plasmid DNA is a standard method to produce adeno-associated virus (AAV) vectors allowing for flexible and scalable manufacture. Typically, three plasmids are used to encode the necessary components to facilitate vector production; however, a dual-plasmid system, termed pDG, was introduced over 2 decades ago demonstrating two components could be combined resulting in comparable productivity to triple transfection. We have developed a novel dual-plasmid system, pOXB, with an alternative arrangement of sequences that results in significantly increased AAV vector productivity and percentage of full capsids packaged in comparison to the pDG dual design and triple transfection. Here, we demonstrate the reproducibility of these findings across seven recombinant AAV genomes and multiple capsid serotypes as well as the scalability of the pOXB dual-plasmid transfection at 50-L bioreactor scale. Purified drug substance showed a consistent product quality profile in line with triple-transfected vectors, except for a substantial improvement in intact genomes packaged using the pOXB dual- transfection system. Furthermore, pOXB dual- and triple-transfection-based vectors performed consistently invivo. The pOXB dual plasmid represents an innovation in AAV manufacturing resulting in significant process gains while maintaining the flexibility of a transient transfection platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.