Abstract

Transformerless (TL) grid-connected photovoltaic (PV) inverters with a common-ground (CG) circuit architecture exhibit some excellent features in removing the leakage current concern and improving the overall efficiency. However, the ability to cope with a wide range of input voltage changes while maintaining the output voltage in a single power conversion stage is a key technological challenge. Considering this, the article at hand proposes a novel dual-mode switched-capacitor five-level (DMSC5L)-TL inverter with a CG feature connected to the grid. The proposed topology is comprised of a single dc source and power diode, three capacitors, four unidirectional, and three bidirectional power switches. Based on the series-parallel switching conversion of the involved switches, the proposed DMSC5L-TL inverter can generate five distinctive output voltage levels during both the boost and buck operation modes with a self-voltage balancing operation for the involved capacitors. A simple dead-beat continuous current controller (DB3C) modulation technique is also used to handle both the active and reactive power exchange while ensuring a fixed switching frequency operation. The proposed circuit description with its DB3C details, the design guidelines with a comparative study, and some experimental results are also given to show the feasibility of the proposed solution for the practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.