Abstract

We present a novel probe design for ambient laser-based mass spectrometry imaging combining electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in a single probe, compatible with a commercial laser ablation electrospray ionization (LAESI) instrument. Here we describe the probe design considerations and features, as well as an in-house developed data processing routine designed to extract accurate mass spectrometry imaging data from ambient laser ablation post-ionization experiments. We characterize the probe performance in both APCI and ESI mode on a selection of compounds and show improved pixel-to-pixel repeatability for LA-APCI as compared to LAESI. We apply the dual ionization probe in APCI mode in a time series experiment to monitor agrochemicals on tomato plants. We investigate the translocation of fungicide isotianil and one of its metabolites, anthranilonitrile, by mass spectrometry imaging over a period of two weeks after application on a leaf surface. LA-APCI-MSI shows translocation of anthranilonitrile from treated leaves towards non-treated leaves. In summary, we demonstrate that LA-APCI imaging is a valuable addition to the ambient mass spectrometry toolbox, with particular advantages for imaging experiments across a variety of compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.