Abstract

Free radical and calcium buffering mechanisms are implicated in cochlear cell damage that has been induced by sound trauma. Thus in this study we evaluated the therapeutic effect of a novel dual inhibitor of calpains and of lipid peroxidation (BN 82270) on the permanent hearing and hair cell loss induced by sound trauma. Perfusion of BN 82270 into the scala tympani of the guinea pig cochlea prevented the formation of calpain-cleaved fodrin, translocation of cytochrome c, DNA fragmentation and hair cell degeneration caused by sound trauma. This was confirmed by functional tests in vivo, showing a clear dose-dependent reduction of permanent hearing loss (ED 50 = 4.07 μM) with almost complete protection at 100 μM. Furthermore, BN82270 still remained effective even when applied onto the round window membrane after sound trauma had occurred, within a therapeutic window of 24 h. This indicates that BN 82270 may be of potential therapeutic value in treating the cochlea after sound trauma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.