Abstract

Due to universal contamination and synergistic toxicity of multiple mycotoxins in foodstuff, reliable and high-throughput detection methods for multiple mycotoxins are urgently needed in corn products. In this study, a novel dual-channel immunochromatographic assay (ICA) based on improved up-conversion nanoparticles (IUCNPs) was developed for rapidly detecting aflatoxin B1 (AFB1) and zearalenone (ZEN). The synthesized IUCNPs doped by 30% Lu3+ showed alarger size, more regular structure, and brighter fluorescence intensity than conventional UCNPs. The limits of detection (LODs) of single-channel ICA test strips for AFB1 and ZEN detection were 0.01 and 0.1ng/mL, respectively. After the optimization, the dual-channel ICA of AFB1 and ZEN in 10min was conducted, resulting in low detection limits of 0.025 and 0.1ng/mL, respectively. Moreover, the built assay was revealed to behighly specific for sixother food-contaminated mycotoxins, and exhibited excellent accuracy, with corresponding R2 of 0.9931 and 0.9982 in calibration curves, respectively. Long-term storage experiments indicated that the dual-channel test strips had superior stability and precision. The LODs of AFB1 and ZEN in spiked maize were 0.025 and 0.25μg/kg, demonstrating great sensitivity and matrix tolerance. Furthermore, the IUNCP-ICA was validated by high-performance liquid chromatography (HPLC) analyses, and a satisfactory consistency was obtained in 15 natural maize samples. Thus, the IUCNPs-ICA proposed in this work realized rapid and sensitive detection of AFB1 and ZEN, providing broad application potential in on-site screening for multiple mycotoxins in agricultural products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call