Abstract

Electrolytic manganese slag (EMS), a bulk waste generated in industrial electrolytic manganese production, can be a cost-effective adsorbent for heavy metals removal after appropriate modification. In this study, EMS was activated by NaOH and then used to make the EMS-based double-network hydrogel (an EMS/PAA hydrogel) via a one-pot method. The results showed that the EMS/PAA hydrogel exhibits a high selective adsorption capacity of 153.85, 113.63 and 54.35 mg·g−1 for Pb (II), Cd (II) and Cu (II), respectively. In addition, Density Functional Theory (DFT) suggests that the adsorption energies (Ead) of Pb, Cd and Cu on SiO2/PAA of the EMS/PAA gels are − 4.15, − 1.96, and − 2.83 eV, respectively, and SiO2/PAA, with a strong affinity to Pb2+, is one of the reasons for the selective adsorption capacity of EMS/PAA gel for Pb2+. The removal efficiency of the EMS/PAA gel for Pb2+, Cd2+, Cu2+ decreased after four adsorption-desorption cycles by 20.00 %, 24.56 % and 46.56 %, respectively. Mechanism studies suggested that the elimination of the heavy metals by EMS/PAA gels mainly involves electrostatic attraction, inner-sphere complexation, and coordination interactions. The EMS/PAA hydrogels not only have high adsorption capacity, but are also easy to prepare and circulate, making them ideal for practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call