Abstract

Summary Horizontal wells that are completed with slotted liners often suffer from a severe water-production problem, which is detrimental to oil recovery. It is because the annulus between the slotted liners and wellbore cannot be fully filled with common hydrogels with poor thixotropy, which determines the ultimate hydrogel filling shape in the annulus. This paper presents a novel hydrogel with high thixotropy to effectively control water production in horizontal wells. This study is aimed at evaluating the thixotropic performance, gelation time, plugging performance, and degradation performance. The thixotropic performance of the new hydrogel was also investigated by measuring its rheological properties and examining its microstructures. It was found that the new hydrogel thickened rapidly after shearing. Its thixotropic recovery coefficient was 1.747, which was much higher than those of traditional hydrogels. The gelation time can be controlled in the range of 2 to 8 hours by properly adjusting the concentrations of the framework material, crosslinker, and initiator. The hydrogel could be customized for mature oil reservoirs, at which it was stable for more than 90 days. A series of laboratory physical modeling tests showed that the breakthrough pressure gradient and the plugging ratio of the hydrogel in sandpacks were higher than 9.5 MPa/m and 99%, respectively. At the same time, it was found that the hydrogel has good degradation properties; the viscosity of the hydrogel breaking solution was 4.22 mPa·s. Freeze-etching scanning-electron-microscopy examinations indicated that the hydrogel had a uniform grid structure, which can be broken easily by shear and restored quickly. This led to the remarkable thixotropic performance. The formation of a metastable structure caused by the electrostatic interaction and coordination effect was considered to be the primary reason for the high thixotropy. The successful development of the new thixotropic hydrogel not only helps to control water production from the horizontal wells, but also furthers the thixotropic theory of hydrogel. This study also provides technical guidelines for further increasing the thixotropies of drilling fluids, fracturing fluids, and other enhanced-oil-recovery polymers that are commonly used in the petroleum industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call