Abstract

The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC50 = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC50 = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This “double-clamp” binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

Highlights

  • The heme oxygenase (HO) system comprises two active isozymes (HO-1 and HO-2) which are involved in the regioselective, oxidative cleavage of heme at the a-meso carbon

  • It was suggested that this secondary pocket was induced upon binding of inhibitor as it was not apparent in the high resolution native structure

  • It was postulated that it may accommodate the bulky group in the thio-(4-aminophenyl) region of azalanstat which we later refuted by the observation of the inducible binding mode of hHO-1 with QC-80 [31]

Read more

Summary

Introduction

The heme oxygenase (HO) system comprises two active isozymes (HO-1 and HO-2) which are involved in the regioselective, oxidative cleavage of heme at the a-meso carbon. CO has been found to be one of the most important gasotransmitters in the body, with evidence demonstrating regulatory involvement in antiinflammatory, antiapoptotic, antiproliferative and vasodilatory effects [5,6,7,8]. Both biliverdin and bilirubin act to scavenge free radicals such as superoxide, peroxyl radicals and peroxynitrite, making them both powerful antioxidants [9,10,11]; bilirubin has been shown to provide protection against oxidative stressinduced pathologies [5]. HO-1 has been found to do be upregulated in several cancers, including pancreatic and prostate, and in response to several anticancer treatments [13,14,15]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.