Abstract

Abstract Doppler radars measure Doppler velocity within the [−VN, VN] range, where VN is the Nyquist velocity. Doppler velocities outside this range are “folded” within this interval. All Doppler “unfolding” techniques use the folded velocities themselves. In this work, we investigate the potential of using velocities derived from optical flow techniques applied to the radar reflectivity field for that purpose. The analysis of wind speed errors using six months of multi-Doppler wind retrievals showed that 99.9% of all points are characterized by errors smaller than 26 m s−1 below 5-km height, corresponding to a failure rate of less than 0.1% if optical flow winds were used to unfold Doppler velocities for VN = 26 m s−1. These errors largely increase above 5-km height, indicating that vertical continuity tests should be included to reduce failure rates at higher elevations. Following these results, we have developed the Two-step Optical Flow Unfolding (TOFU) technique, with the specific objective to accurately unfold Doppler velocities with VN = 26 m s−1. The TOFU performance was assessed using challenging case studies, comparisons with an advanced Doppler unfolding technique using higher Nyquist velocities, and 6 months of high VN (47.2 m s−1) data artificially folded to 26 m s−1. TOFU failure rates were found to be very low. Three main situations contributed to these errors: high low-level wind shear, elevated cloud layers associated with high winds, and radar data artifacts. Our recommendation is to use these unfolded winds as the first step of advanced Doppler unfolding techniques. Significance Statement The potential of using optical flow winds operationally to accurately unfold Doppler velocities is demonstrated in this work. The operational significance is that the Nyquist velocity can confidently be reduced to 26 m s−1, allowing for extended first trip radar maximum range and reduced contamination from dual pulse repetition frequency artifacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call