Abstract

To date, existing tissue adhesives have various weak points in gluing kinetics and stability - particularly, in biocompatibility, which make most of them remain suboptimal for internal conditions. Herein, a novel mussel-inspired "BCD" tissue glue made of bovine serum albumin (BSA), citrate acid (CA) and dopamine was developed aiming at internal medical applications. BSA was employed as a natural and biocompatible macromolecular backbone; CA was introduced as a dual-functional intermediate to increase reactive carboxyl sites for engraftment of dopamine onto BSA backbone and also block the competing reactive amines from the proteinic backbone. Timely curing and stable adhesion were achieved between biological tissue substrates via instant chelation and gradual conjugation of DOPA-catechol groups in BCD glue. Within 30min, this newly developed BCD tissue glue can provide over 10-fold greater adhesion stress than that of commercially available fibrin glue in wet environment. As a tissue adhesive for internal use, its superior properties also include ideal gelation kinetics and swelling behaviour, appropriate degradation rate, sound cytocompatibility invitro, as well as fine biocompatibility invivo. More importantly, successful animal experimentations in seroma prevention and instant hemostasis ultimately validated BCD tissue glue's preclinical efficacy as a tissue adhesive for various internal medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.