Abstract

We found a rice dominant genetic male-sterile mutant OsDMS-1 from tissue culture-regenerated offspring of Zhonghua 11 (japonica rice). Compared to Zhonghua 11, OsDMS-1 mutant anthers were narrow and pale and incapable of pollen release although the glume opened normally. Approximately 81.4% of this mutant pollen was small and malformed and could not be stained by iodine treatment. A paraffin section assay showed delayed degradation of the OsDMS-1 mutant tapetum without starch accumulation in the mutant pollen, ultimately leading to pollen abortion. Classical genetic analysis indicated that only one dominant gene controlled the sterility in the OsDMS-1 mutant. However, molecular mapping suggested three loci simultaneously control male sterility in this mutant: OsDMS-1A (on chromosome 1), flanked by InDel markers C1D4 and C1D5, OsDMS-1B (on chromosome 2), flanked by InDel markers C2D3 and C2D10, and OsDMS-1C (on chromosome 3), flanked by InDel markers 0315 and C3D3. Molecular mapping disagreed with classical genetic analysis regarding the number of genes controlling the OsDMS-1 mutant, indicating a novel mechanism underlying sterility in OsDMS-1. We present two hypotheses to explain this novel inheritance behavior: one is described as Parent-Originated Loci Tying Inheritance (POLTI); while the alternate hypothesis is described as Loci Recombination Lethal (LRL).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call