Abstract

BackgroundThe aerial parts of land plants are covered with cuticular waxes that limit non-stomatal water loss and gaseous exchange, and protect plants from ultraviolet radiation and pathogen attack. This is the first report on the characterization and genetic mapping of a novel dominant glossy mutant (BnaA.GL) in Brassica napus.ResultsTransmission electron microscopy revealed that the cuticle ultrastructure of GL mutant leaf and stem were altered dramatically compared with that of wide type (WT). Scanning electron microscopy corroborated the reduction of wax on the leaf and stem surface. A cuticular wax analysis of the GL mutant leaves further confirmed the drastic decrease in the total wax content, and a wax compositional analysis revealed an increase in aldehydes but a severe decrease in alkanes, ketones and secondary alcohols. These results suggested a likely blockage of the decarbonylation step in the wax biosynthesis pathway. Genetic mapping narrowed the location of the BnaA.GL gene to the end of A9 chromosome. A single-nucleotide polymorphism (SNP) chip assay in combination with bulk segregant analysis (BSA) also located SNPs in the same region. Two SNPs, two single sequence repeat (SSR) markers and one IP marker were located on the flanking region of the BnaA.GL gene at a distance of 0.6 cM. A gene homologous to ECERIFERUM1 (CER1) was located in the mapped region. A cDNA microarray chip assay revealed coordinated down regulation of genes encoding enzymes of the cuticular wax biosynthetic pathway in the glossy mutant, with BnCER1 being one of the most severely suppressed genes.ConclusionsOur results indicated that surface wax biosynthesis is broadly affected in the glossy mutant due to the suppression of the BnCER1 and other wax-related genes. These findings offer novel clues for elucidating the molecular basis of the glossy phenotype.

Highlights

  • The aerial parts of land plants are covered with cuticular waxes that limit non-stomatal water loss and gaseous exchange, and protect plants from ultraviolet radiation and pathogen attack

  • Fatty acids with chain length of up to C16 and C18 are synthesized in the plastids and subsequently exported to the cytoplasm where they are further elongated to very long-chain fatty acids (VLCFAs; C20 to C34) through the sequential addition of two-carbon units in a reaction catalyzed by fatty acid elongase complexes in the endoplasmic reticulum [1,2]

  • Since the BnaA.GL allele behaves in a dominant fashion in regulating wax biosynthesis, this glossy mutant is unique from other cer mutants reported to date and may prove useful for future study on the regulation of wax biosynthesis pathways in plants

Read more

Summary

Introduction

The aerial parts of land plants are covered with cuticular waxes that limit non-stomatal water loss and gaseous exchange, and protect plants from ultraviolet radiation and pathogen attack. This is the first report on the characterization and genetic mapping of a novel dominant glossy mutant (BnaA.GL) in Brassica napus. In Arabidopsis, the cuticular wax of stems consists of VLCFA alkanes, aldehydes, fatty acids, primary alcohols, wax esters, secondary alcohols and ketones, with 80-90% alkanes, secondary alcohols and ketones [17,18] The biosynthesis of these compounds involves two pathways: the acyl-reduction pathway in which primary alcohols and wax esters are synthesized and the decarbonylation pathway through which aldehydes, alkanes, ketones and secondary alcohols are synthesized [18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call