Abstract

Rolling-circle replication of single-stranded genomes of plant geminiviruses is initiated by sequence-specific DNA binding of the viral replication-related protein (Rep) to its cognate genome at the replication origin. Monopartite begomovirus-associated betasatellites can be trans replicated by both cognate and some noncognate helper viruses, but the molecular basis of replication promiscuity of betasatellites remains uncharacterized. Earlier studies showed that when tomato yellow leaf curl China virus (TYLCCNV) or tobacco curly shoot virus (TbCSV) is coinoculated with both cognate and noncognate betasatellites, the cognate betasatellite dominates over the noncognate one at the late stages of infection. In this study, we constructed reciprocal chimeric betasatellites between tomato yellow leaf curl China betasatellite and tobacco curly shoot betasatellite and assayed their competitiveness against wild-type betasatellite when coinoculated with TYLCCNV or TbCSV onto plants. We mapped a region immediately upstream of the conserved rolling-circle cruciform structure of betasatellite origin that confers the cognate Rep-mediated replication advantage over the noncognate satellite. DNase I protection and in vitro binding assays further identified a novel sequence element termed Rep-binding motif (RBM), which specifically binds to the cognate Rep protein and to the noncognate Rep, albeit at lower affinity. Furthermore, we showed that RBM-Rep binding affinity is correlated with betasatellite replication efficiency in protoplasts. Our data suggest that although strict specificity of Rep-mediated replication does not exist, betasatellites have adapted to their cognate Reps for efficient replication during coevolution. Begomoviruses are numerous circular DNA viruses that cause devastating diseases of crops worldwide. Monopartite begomoviruses are frequently associated with betasatellites which are essential for induction of typical disease symptoms. Coexistence of two distinct betasatellites with one helper virus is rare in nature. Our previous research showed that begomoviruses can trans replicate cognate betasatellites to higher levels than noncognate ones. However, the molecular mechanisms of betasatellites selective replication remain largely unknown. We investigated the interaction between the begomovirus replication-associated protein and betasatellite DNA. We found that the replication-associated protein specifically binds to a motif in betasatellites, with higher affinity for the cognate motif than the noncognate motif. This preference for cognate motif binding determines the selective replication of betasatellites. We also demonstrated that this motif is essential for betasatellite replication. These findings shed new light on the promiscuous yet selective replication of betasatellites by helper geminiviruses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call