Abstract

Path planning algorithms determine the performance of the ambient intelligence navigation schemes in autonomous mobile robots. Sampling-based path planning algorithms are widely employed in autonomous mobile robot applications. RRT*, or Optimal Rapidly Exploring Random Trees, is a very effective sampling-based path planning algorithm. However, the RRT* solution converges slowly. This study proposes a directional random sampling-based RRT* path planning algorithm known as DR-RRT* to address the slow convergence issue. The novelty of the proposed method is that it reduces the search space by combining directional non-uniform sampling with uniform sampling. It employs a random selection approach to combine the non-uniform directional sampling method with uniform sampling. The proposed path planning algorithm is validated in three different environments with a map size of 384*384, and its performance is compared to two existing algorithms: RRT* and Informed RRT*. Validation is carried out utilizing a TurtleBot3 robot with the Gazebo Simulator and the Robotics Operating System (ROS) Melodic. The proposed DR-RRT* path planning algorithm is better than both RRT* and Informed RRT* in four performance measures: the number of nodes visited, the length of the path, the amount of time it takes, and the rate at which the path converges. The proposed DR-RRT* global path planning algorithm achieves a success rate of 100% in all three environments, and it is suited for use in all kinds of environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call