Abstract
In recent years, inhibition of photoinduced electron and hole recombination is considered as a breakthrough to improve the photocatalytic degradation of pollutants. In this study, we successfully loaded ZnFe 2 O 4 (ZFO) microsphere onto BiFeO 3 (BFO) microcubes via a simple hydrothermal method, and intimate interface between BFO and ZFO was constructed. Under the effect of heterojunction between BFO and ZFO, the recombination rate of photogenerated electron-hole pairs was decreased significantly, leading to the enhanced photocatalytic effect. The photocatalytic experiments show that the degradation efficiency of BFO/ZFO-10% composite for tetracycline and methylene blue are 1.63 and 1.38 times higher than that of pure BFO. In addition, four cycles experiment also proved that BFO/ZFO has good stability and excellent magnetic recovery properties. A possible carrier transfer path on the base of the direct Z-scheme mechanism in composite was proposed. This study provides a useful guide toward the design of the highly efficient and magnetic collectable photocatalysts by the introduction of magnetic component and the construction of heterojunction, and as-synthesized BFO/ZFO was proved to be a promising photocatalyst for the elimination of toxic organic molecules in groundwater. • 3D/3D BFO/ZFO photocatalyst were prepared by simple hydrothermal method. • Direct Z-scheme photocatalytic system promotes the separation efficiency of carriers. • Charge carriers were separated efficiently due to the BFO/ZFO heterojunction. • Magnetic BFO/ZFO can be recovered under the external magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.