Abstract

A novel flow photometric detector based on paired emitter-detector diodes (PEDD), coupled with solenoid pulse micro-pumps is presented. The photometric detection chamber also plays a role of the reaction chamber. Both solutions, a sample and a reagent, are injected by solenoid micro-pumps directly and simultaneously into the chamber in countercurrent. This method ensures fast and effective mixing of the injected solutions. A good accuracy and precision of the injected volumes assure the pulse micro-pumps. This method, in comparison with other flow methods, does not require the application of the reaction coil. Thanks to this, the dispersion of the sample is minimized.The presented flow network is easy to control, miniaturize and exhibits a very low consumption of reagents and the sample. Two chemical systems were chosen and presented as models of photometric reactions: the first – Fe(III) with thiocyanate, and the second – Cr(VI) with 1,5-diphenylcarbazide. To obtain the highest repeatability, the total volume of the solutions should be smaller than the volume of the reaction-detection chamber. In this case, the whole coloured product remains in the chamber. The use of the proposed direct-injection PEDD detector considerably simplifies analytical procedures. The shape of analytical signals and their potential applications have been discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.