Abstract

The electroencephalogram (EEG) signals with different brain states show different nonlinear dynamics. Recently the statistical properties of complex networks theory have been applied to explore the nonlinear dynamics of time series, which studies the dynamics of time series via its organization. This study combines the complex networks theory with epileptic EEG analysis and applies the statistical properties of complex networks to the automatic epileptic EEG detection. We construct the complex networks from the epileptic EEG series and then calculate the entropy of the degree distribution of the network (NDDE). The NDDE corresponding to the ictal EEG is lower than interictal EEG's. The experiment result shows that the approach using the NDDE as a classification feature obtains robust performance of epileptic seizure detection and the accuracy is up to 95.75%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.