Abstract

We propose an efficient low bit error rate (BER) and low complexity multiple-input multiple-output (MIMO) multiuser detection (MUD) method for use with multiuser MIMO orthogonal frequency division multiplexing (OFDM) systems. It is a hybrid method combining a multiuser-interference-cancellation-based decision feedback equalizer using error feedback filter (MIMO MIC DFE-EFF) and a differential algorithm. The proposed method, termed ‘MIMO MIC DFE-EFF with a differential algorithm’ for short, has a multiuser feedback structure. We describe the schemes of MIMO MIC DFE-EFF and MIMO MIC DFE-EFF with a differential algorithm, and compare their minimum mean square error (MMSE) performance and computational complexity. Simulation results show that a significant performance gain can be achieved by employing the MIMO MIC DFE-EFF detection algorithm in the context of a multiuser MIMO-OFDM system over frequency selective Rayleigh channel. MIMO MIC DFE-EFF with the differential algorithm improves both computational efficiency and BER performance in a multistage structure relative to conventional DFE-EFF, though there is a small reduction in system performance compared with MIMO MIC DFE-EFF without the differential algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.