Abstract

A novel design concept to enhance the bandwidth of a differential-fed patch antenna using the dual-resonant radiation of a stepped-impedance resonator (SIR) is proposed. The SIR is composed of two distinctive portions: the radiating patch and a pair of open stubs. Initially, based on the transmission line model, the first and second odd-order radiative resonant modes, i.e., TM10 and TM30, of this SIR-typed patch antenna are extensively investigated. It is demonstrated that the frequency ratio between the dual-resonant modes can be fully controlled by the electrical length and the impedance ratios between the open stub and radiating patch. After that, the SIR-typed patch antenna is reshaped with stepped ground plane in order to increase the impedance ratio as highly required for wideband radiation. With this arrangement, these two radiative modes are merged with each other, resulting in a wide impedance bandwidth with a stable radiation pattern under dual-resonant radiation. Finally, the proposed antenna is designed, fabricated, and measured. It is verified in experiment that the impedance bandwidth ( $\vert S_{\mathrm{ dd11}}\vert dB) of the proposed antenna has gained tremendous increment up to 10% (0.85–0.94 GHz) with two attenuation poles. Most importantly, the antenna has achieved a stable gain varying from 7.4 to 8.5 dB within the whole operating band, while keeping low-cross polarization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.