Abstract

Generalization performance of support vector machines (SVM) with Gaussian kernel is influenced by its model parameters, both the error penalty parameter and the Gaussian kernel parameter. The differential evolution (DE) algorithms have strong search ability and easy to implement. But it falls into local optimum easily. Hence a novel differential evolution algorithm which integrating opposition-based learning and hybrid competition between adjacent two generations is put forward for parameter selection of SVM (DGODE-SVM). In DGODE-SVM algorithm, opposition-based learning and hybrid competition between adjacent two generations are inserted into the differential evolution process. Nineteen experimental results on UCI datasets distinctly show that, compared with ODE-SVM, SaDE-SVM, DE-SVM, SVM, C4.5, KNN and NB algorithms, the proposed algorithm has higher classification accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.