Abstract

A novel dielectric barrier discharge (DBD) reactor was made for the abatement of xylene. This reactor has a photocatalytic electrode prepared by a modified anodic oxidation method which was proposed in this work. The photocatalytic electrode has nano-TiO2 deposited on sintered metal fiber (SMF). The reactor using the nano-TiO2/SMF electrode shows much better performance in abating xylene compared with reactors using other electrodes such as resistance wire or SMF. The conversion ratio of xylene reaches 92.7% in the novel reactor at a relatively voltage (23.6kV). This ratio is much higher than the conversion ratios of xylene in the traditional reactors with resistance wire or SMF electrodes, which are ∼64.7%. The selectivity of CO2 of the reactor using the nano-TiO2/SMF electrode (300pps, 23.6kV) was observed to be 86.6%, which is about twice as large as that of a traditional reactor using a resistance wire electrode. If a traditional DBD reactor is replaced by the novel reactor, at the same specific input energy, the energy yield can increase from 0.391 to 0.556mg/kJ. Finally, the xylene decomposition mechanism with the nano-TiO2/SMF electrode was also briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call