Abstract

A series of fluorometric sensors of Zn2+ have been synthesized due to the significant function of Zn2+ in the human body and environment. However, most of probes reported for detecting Zn2+ have high detection limit or low sensitivity. In this paper, an original Zn2+ sensor, namely 1o, was synthesized by diarylethene and 2-aminobenzamide. When Zn2+ was added, the fluorescence intensity of 1o increased by 11 times within 10 s, along with a fluorescence color change from dark to bright blue, and the detection limit (LOD) was calculated to be 0.329 μM. According to Job’s plot curves, the binding mode of 1o and Zn2+ was measured as 1:1, which was further proved by 1H NMR spectra, HRMS and FT-IR spectra. The logic circuit was designed to take advantage of the fact that the fluorescence intensity of 1o can be controlled by Zn2+, EDTA, UV and Vis. In addition, Zn2+ in actual water samples were tested, in which the recovery rate of Zn2+ was between 96.5 % and 109 %. Furthermore, 1o was successfully made into a fluorescent test strip, which could be used to detect Zn2+ in the environment economically and conveniently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.