Abstract

We aimed to develop a novel ultrasound system and examine its feasibility for noninvasively detecting thoracic aortic aneurysm (TAA) in clinical settings. We developed a novel ultrasound system consisting of a modified console and data analysis algorithm. The exploratory study included 100 patients hospitalized for elective cardiovascular surgery. After admission, the arterial pulse waveform at the left carotid artery was acquired using the novel system. Based on these data, we inferred the presence of TAA based on arterial viscoelasticity and instability, which are reflected into the time-averaged trajectory of deformation of the blood vessel wall caused by disturbance of blood flow. Meanwhile, all patients underwent computed tomography as preoperative screening to confirm the presence of TAA. The sensitivity and specificity of TAA detection using the novel ultrasound system were calculated. The datasets from 37 patients were not suitable for analysis and were thus discarded. Based on computed tomography findings, 40 patients were categorized into the aneurysm group while 23 were judged not to have and aortic aneurysm. On the other hand, 44 patients were diagnosed as having TAA based on ultrasound findings obtained using the novel system. The overall sensitivity and specificity of the ultrasound system were 0.83 and 0.52, respectively. We successfully developed a novel system for noninvasive, ultrasound-based evaluation of the left carotid artery to detect TAA. Although improvements to the probe and diagnostic algorithm are warranted, this device has potential utility for mass screening to detect asymptomatic TAA as part of community-level healthcare programs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.