Abstract

PurposeThe purpose of this paper is to detail the design and first use of a force transducer device to study the development of forces during the laser-powder bed fusion (L-PBF) process from which residual stresses can be inferred.Design/methodology/approachThe proposed novel device consists of an array of load cells for in-situ measurement of forces over time during the L-PBF additive manufacturing process. Measurements of the developed forces layer by layer were recorded in a first build using a 67-degree rotating scan strategy using Inconel 625 build material.FindingsPreliminary experimental results from in-situ measurements using a 67-degree rotating scan strategy showed that the forces induced in the first five layers represented approximately 80% of the maximum on completion of the build and were distributed such as to induce concave deformation of the part, i.e. tension in the centre and compression at the edges of the part.Originality/valueThis paper describes a novel device for in-process measurement of the spatial distribution and time-varying nature of the forces induced during the L-PBF process as well as an evaluation of the residual forces following the completion of the build.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.