Abstract

In this paper, a Lyapunov-based fuzzy logic control (FLC) system is developed for controlling of complicated as well as distinct nonlinear systems. According to Lyapunov Stability Theory, a candidate Lyapunov function with simple quadratic form is designed. Via constructing the fuzzy IF–THEN rules through referencing the statuses of errors states and error derivatives in each sub-space of the Lyapunov function derivatives, the proposed structure of FLC system is able to appropriately as well as flexibly adjust the control forces with minimum magnitude compensating the nonlinear systems in real-time. In addition, the designed FLC system can be applied to different kinds of control systems without further information and operation experience. Two nonlinear systems with distinct structures, classical Lorentz system and Mathieu-van der Pol system, are illustrated for simulation examples. In comparison of the previous research work, the simulation results reveal the effectiveness, flexibility and convenient-design of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call