Abstract

Objective: The main objective of this study is to evaluate a novel design to optimize dental implant biomechanics. According to this objective, evaluations of the resilient implant design which aimed to mimic biomechanical behaviors of natural tooth have been made and outcomes were compared with natural tooth and standard dental implants with using 3D hyper-elastic finite element analysis. Methods: Models used in the study corresponding to conventional dental implant, natural tooth and resilient dental implant design. Hyperelastic model analysis were performed for close presentment of mechanical behaviors of resilient materials like periodontal ligament and medical silicone. Top values of maximum principal stress, minimum principal stress of surrounding bone and displacement of each model were evaluated under axial and non-axial loading conditions with magnitude of 30N, 80N and 100N. Results: Outcomes of finite element study showed reduction on maximum principal stress and minimum principal stress levels with the use of resilient dental implant comparing to the standard implant model. Standard implant model had been observed notably rigid in all loading conditions compared to the other models. Resilient implant model showed similar biomechanical characteristics with natural tooth model within the limitations of this study. Conclusion: According to finite element analysis results; resilient implant design was able to resolve some biomechanical discrepancies and seem to have adequate biomechanical similarity with natural tooth under both axial and non-axial loading conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call