Abstract
Optical communications with photonic switching are promising to provide high bandwidth and low error bit. Self-routing strictly nonblocking networks are always favoured to be used as switching networks due to their simple routing mechanisms and nonblocking properties. However, crosstalk problems in photonic switching add a new dimension of nonblocking constraints on optical switching networks. The classical self-routing strictly nonblocking N×N crossbar network has N2 switching elements (SEs) and 2N−1 connection diameter, and needs N wavelengths for nonblocking switching. In this paper, we propose a new class of self-routing strictly nonblocking networks by studying the connection capacity of self-routing blocking Banyan-type networks. The new proposed N×N networks have no more than N2−N SEs and (log N) connection diameter. Furthermore, they need no more than two wavelengths for nonblocking switching. Compared with existing strictly nonblocking self-routing networks, the presented new networks have lower hardware cost, shorter connection diameter, and much smaller number of required wavelengths. Consequently, they are more feasible for implementation with reduced optical signal attenuation and crosstalk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computers and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.