Abstract

Abstract Previously reported studies have shown that the volumetric receivers have lower radiative and convective losses, leading to higher efficiency. However, the conventional volumetric receivers are difficult to use along with the thermal storage systems, owing to the use of air as the heat transfer fluid. Molten salt, having high heat capacity, emerges as a suitable candidate to be employed as the heat transfer fluid and for storing thermal energy in the storage devices. It is challenging to use the molten salt in the conventional volumetric receiver configuration; therefore, a novel design called Liquid Volumetric Plated Cavity Receiver is proposed, where the solar salt is used as heat transfer fluid. It consists of a parallel arrangement of hollow plates in an open cavity. Solar radiation concentrated by the heliostat field is absorbed on the outer surface of the hollow plates. The heat is then taken away by the molten salt flowing inside the hollow plates. The plates are arranged such that the molten salt gets heated up within the volume of the enclosure, effectively mimicking the heating performance of the volumetric receivers. Using an analytical model for heat losses, it is observed that the losses are very sensitive to the aspect ratio of the aperture and depth of the receiver. The effects of receiver inclination, plate orientations, radiation incident at the aperture, and surface emissivity have been investigated as well. The results show that a Liquid Volumetric Plated Cavity Receiver increases the efficiency (by ∼3%) as compared with that of the simple cubic receiver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call