Abstract

In this paper we propose a novel method for developing a polymeric heart valve that could potentially offer an optimum solution for a heart valve substitute. The valve design proposed will provide superior hydrodynamic performance and excellent structural integrity. A full description of the design process is given together with an analysis of the hemodynamic performance using a 2-way strongly coupled Fluid Structure Interaction (FSI). A polymeric tri-leaflet heart valve is designed based on a patient's sinus of Valsalva (SOV) geometry. The design strategy aims to improve valve hemodynamic performance as well as valve durability by avoiding stress concentrations in the leaflets and reducing the maximum stress level. The valve dynamics and stress levels are also validated by comparing the predicted data to existing experimental and numerical data. The stress distribution in the valve structure is fully characterized throughout the simulation and Von Mises stress is found to be up to 5.32 Mpa during diastole. The results show that an effective orifice area (EOA) and a pressure drop of 3.22 cm^2, and 3.52 mmHg, respectively, can be achieved using the proposed design. The optimized valve demonstrates high hemodynamic performance with no sign of damaging stress concentration in the entire cardiac cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.