Abstract

This study evaluates the feasibility of delivery and deployment of low and medium molecular weight (LMW and MMW, respectively) double-opposing helical (DH) poly-l-lactic acid biodegradable stent (BDS) in rabbit descending aorta (DAO). Secondary objectives were to assess patency and inflammation of stented vessels at 9 months and to investigate safety following intentional embolization of stent fragments in DAO. A BDS that will relieve aortic obstruction and disappears as the child grows older allowing for preservation of aortic wall elasticity and natural growth of aorta will be ideal to treat Coarctation (CoA). BDS have never been evaluated in the DAO. Seven New Zealand white rabbits underwent implantation of DH-LMW (n = 7), DH-MMW (n = 3), and metal stents (n = 7) in DAO. BDS fragments were intentionally embolized into DAO in two rabbits. All stents were deployed via a 6-French sheath. Five BDS covered the origin of major DAO side branches. Angiography and intravascular ultrasound showed good stent apposition to the wall of DAO with minimal luminal loss at 9 months follow-up. All stents had minimal neointimal hyperplasia on histopathology. Adverse events included 1 death, 1 aortic aneurysm, and lower extremity ulceration due to self-mutilation in an embolization rabbit. Pilot study confirms the feasibility of delivery and deployment of up to 6-millimeter diameter DH BDS in rabbit DAO. Stent integrity with DH design was maintained at 9 months with minimal vessel inflammation. Potential morbidity due to embolized BD fragments cannot be ruled out and needs further evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.